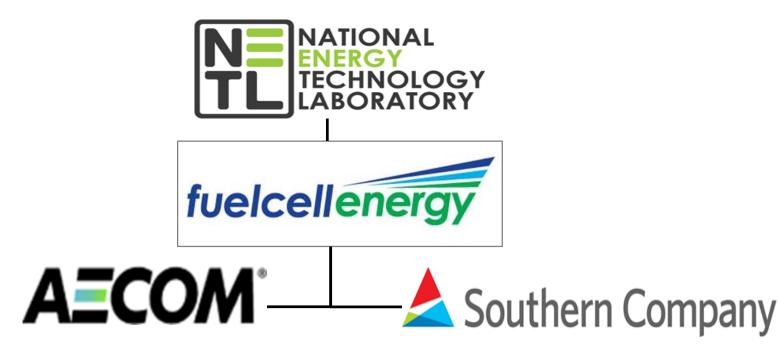
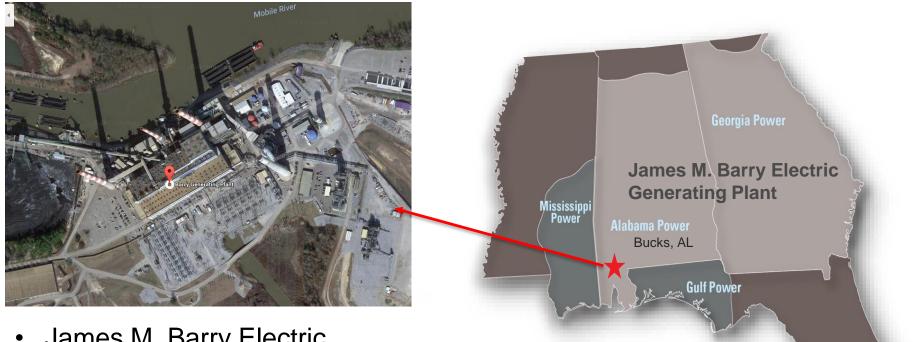


Pilot Test of Novel Electrochemical Membrane System for Carbon Dioxide Capture and Power Generation DE-FE0026580 Hossein Ghezel-Ayagh 2017 NETL CO2 Capture Technology Project Review Meeting Omni William Penn Hotel, Pittsburgh, PA August 21 – August 25, 2017


Electrochemical Membrane (ECM) Carbon Capture Pilot Pant Project

- Design a small pilot scale (60 T/D) carbon capture plant prototypical of a commercial unit
- Fabricate and install the pilot-scale plant at a coal facility
- Conduct >2 months of tests, demonstrating >90% capture (>95% CO₂ purity)
- Complete Techno-Economic Analysis (TEA) of ECM carbon capture applied to a 550 MW baseline supercritical PC plant, achieving 30% less COE compared to amine scrubbers
- Determine Environmental, Health and Safety (EH&S) requirements of ECM Carbon Capture plants

Project Team Structure



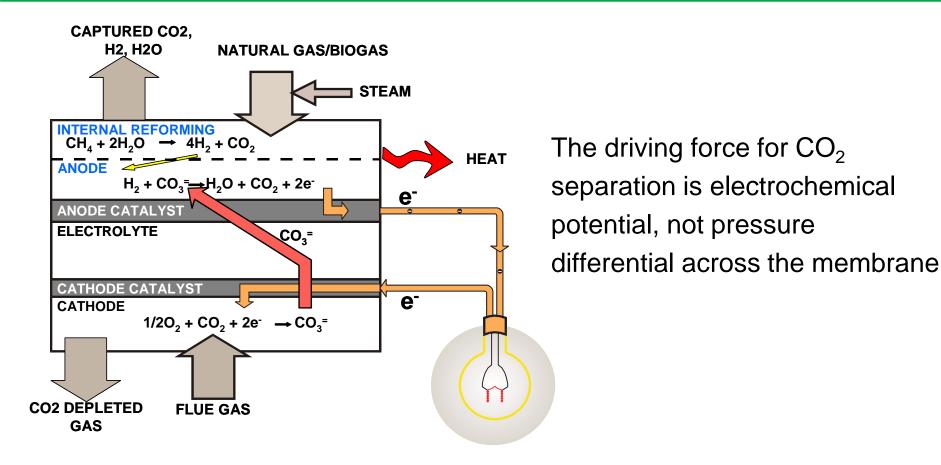
- TEA Support (review ECM system design, equipment and plant costing)
- Pilot system key equipment specification and selection
- Flue gas clean-up system design

- Demonstration site host
- Construction management
- Environmental support
- Pilot plant installation and test support

Pilot Demonstration Site

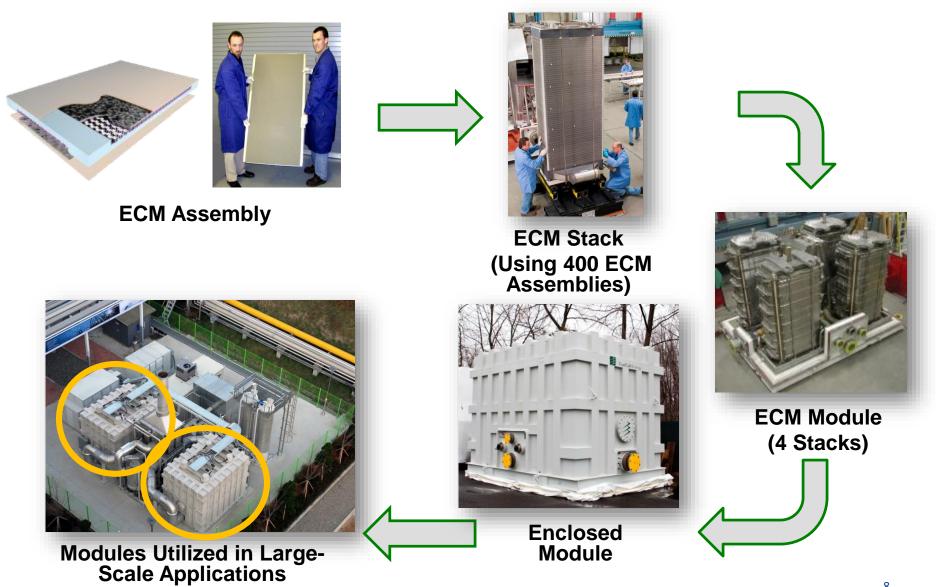
- James M. Barry Electric Generating Station, Alabama Power/Southern Co.
- Location: Bucks, Al
- Nameplate Capacity: 1,771 MWe, Mix of Coal and Natural gas

Project Schedule and Budget


	BP 1				BP 2				BP 3					
	2016		2017			2018			2019					
	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Techno-Economic Analysis (TEA) & EHS														
Initial														
Update														
Pilot Plant BOP Design														
Pilot Plant Fabrication														
BOP Equipment														
ECM Module														
Factory Acceptance Tests														
Install														
Pilot Plant Operation														
Field Acceptance Testing and Commission														
Test & Evaluation														
De-Commission														

	Budget Period 1		Budget F	Period 2	Budget F	Period 3	Total Project			
	(10/1/2015 - 12/31/2017)		(1/1/2018 - 3	3/31/2019)	(4/1/2019 - 1	2/31/2019)	(10/1/2015 - 12/31/2019)			
	Government		Government		Government		Government			
	Share	Cost Share	Share	Cost Share	Share	Cost Share	Share	Cost Share		
Total	\$ 3,879,796	\$ 969,949	\$ 9,539,174	\$12,136,072	\$ 1,581,030	\$ 2,011,442	\$ 15,000,000	\$15,117,464		
Cost Share	80.00%	20.00%	44.01%	55.99%	44.01%	55.99%	49.80%	50.20%		

Electrochemical Membrane (ECM) Technology Overview



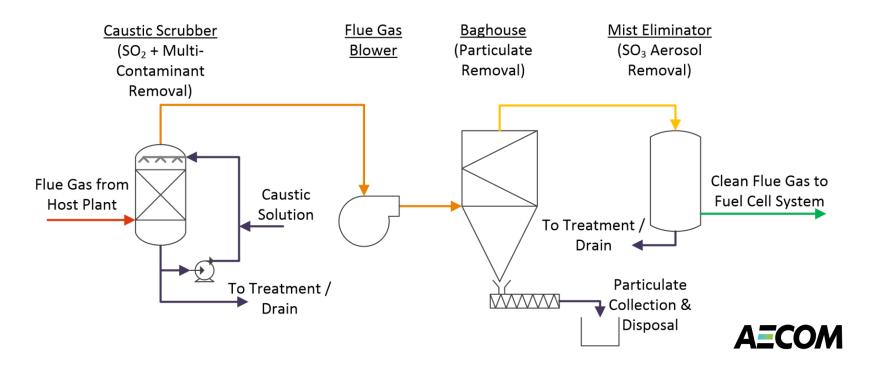
Net Results

- Simultaneous Power Production and CO₂ Separation from Flue Gas of an Existing Facility
- Excess Process Water Byproduct
- Complete Selectivity towards CO₂ as Compared to N₂

Modular Technology

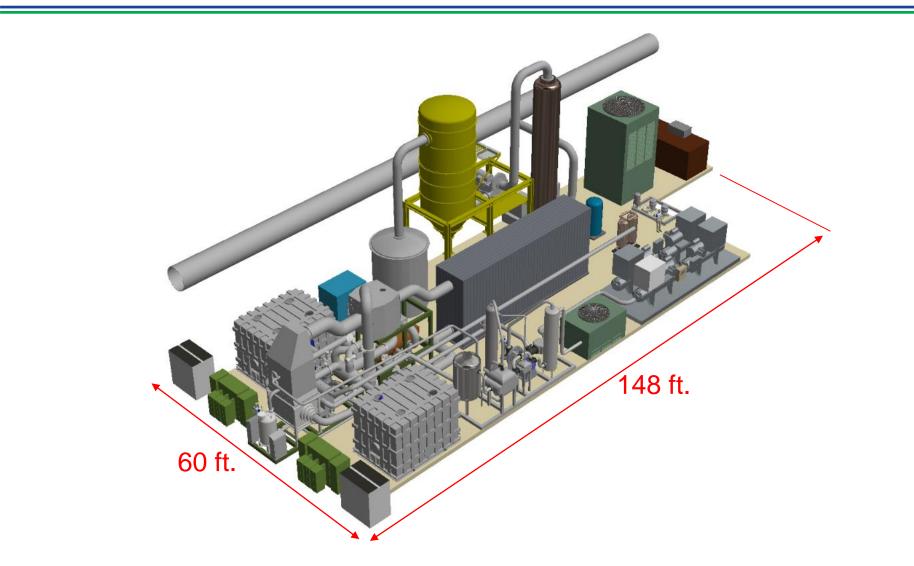
ECM Pilot Plant Development

- Pilot Plant is designed to capture up to 60 tonnes per day of CO₂ from coal-fired power plant flue gas
- Operate in stand-alone power generation mode when either flue gas feed or CO₂ sink are unavailable (the system is water-neutral in this mode)

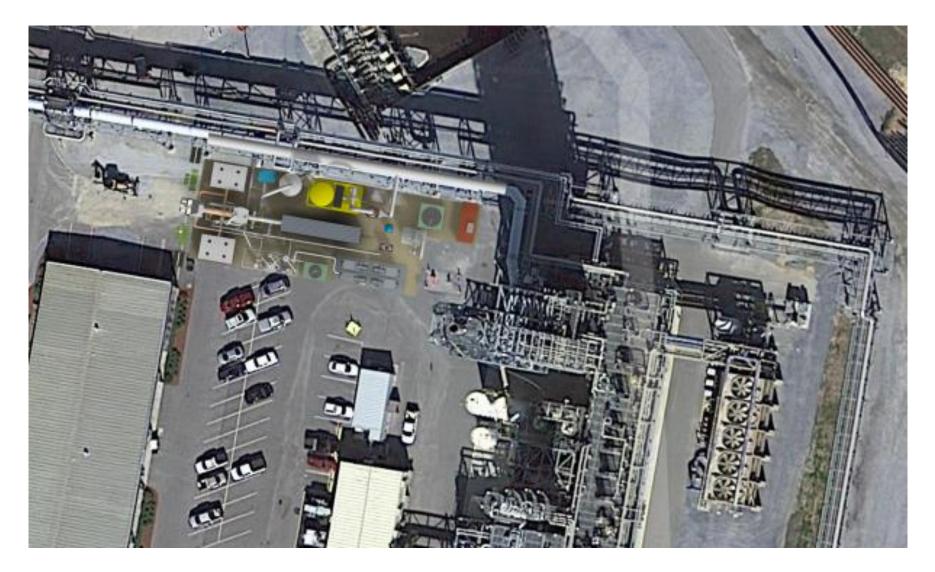

Operating Mode	90% Capture Coal-Derived FG					
MCFC Gross Power, DC	1863.4	kW				
Energy & Water Input						
Natural Gas Fuel Flow	169.4	scfm				
Fuel Energy (LHV)	2877.8	kW				
Water Consumed/(Produced)	(1.8)	gpm				
Consumed Power						
AC Power Consumption	(611.0)	kW				
Inverter Loss	(74.5)	kW				
Total Parasitic Power Consumption	(685.6)	kW				
Net Generation & Efficiency						
CEPACS Plant Net AC Output	1177.8	kW				
Electrical Efficiency (LHV)	40.9	%				
Carbon Capture						
Total Carbon Capture, %	92	%				
Carbon Capture from FG, %	90	%				
Total CO ₂ Captured, Tons per Day	67	T/D				
CO ₂ Purity	99.6	%				

- Site Access Agreement and Services Agreement executed between FCE and Southern Company Services
- Detailed analysis of tie-in locations and permitting requirements:
 - No air permit expected (exhaust routed back to main stack)
 - Water discharge permit applicability being investigated
 - Detailed design for tie-ins to be developed by AECOM
- Detailed design of pilot system:
 - Process configuration analysis and optimization were completed
 - Equipment specifications and RFPs are underway
 - Detailed process and electrical engineering (P&IDs, piping design, power distribution drawings, etc.) are ongoing
 - Plant packaging and skid design are underway

Flue Gas Polishing System



- Cleanup equipment train design, specifications, and RFQ process completed in partnership with AECOM
- Vendor bids selected for each piece of equipment, ready for purchasing



Pilot Plant Layout

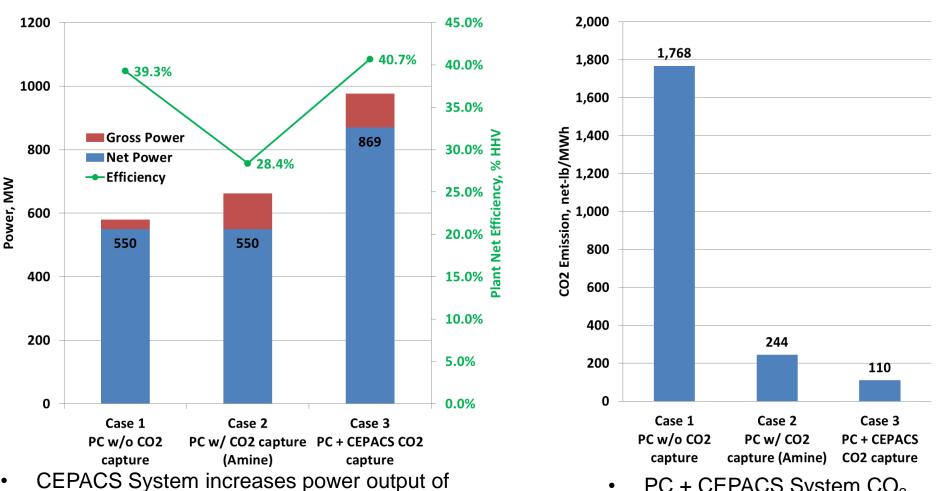
Overlay on Proposed Location


Techno-Economic Analysis

Large Scale Coal Capture System

<u>Combined Electric Power and Carbon-dioxide Separation (CEPACS) System</u> Concept Implementation for 550 MW Reference Supercritical PC Plant*

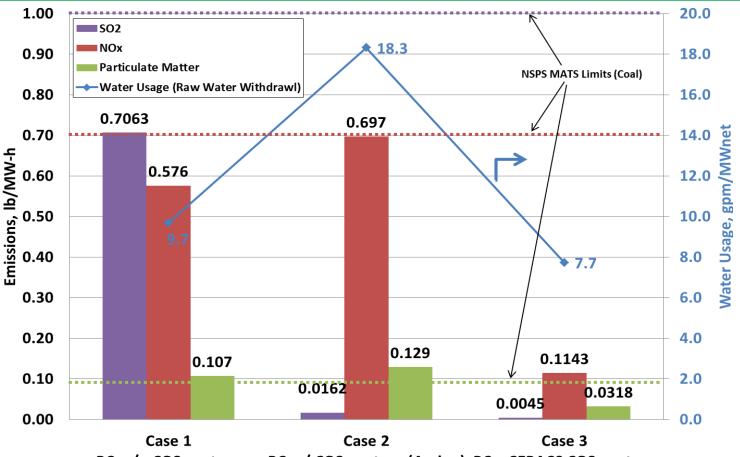
- 4.3 Million tons of CO₂ capture per year
- 319 MW ECM-based system would capture 90% of CO₂ from 550MW plant
- 2.5 GWh ultra-clean power generated per year @ 40.7% Efficiency (based on HHV NG)
- Cost of CO₂ capture in low power value coal regions targeted to meet DOE goal of less than \$40/tonne, or less than incremental \$0.02/kWh COE. Cost of capture is significantly less in high power cost areas, where higher power value drives additional revenue to project


319 MW Plant for capture from coal systems, developed in DOE program

Future long term development for 90% capture of CO₂ from large coal power plants

* Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity, Revision 2a, DOE/NETL-2010/1397, September 2013.

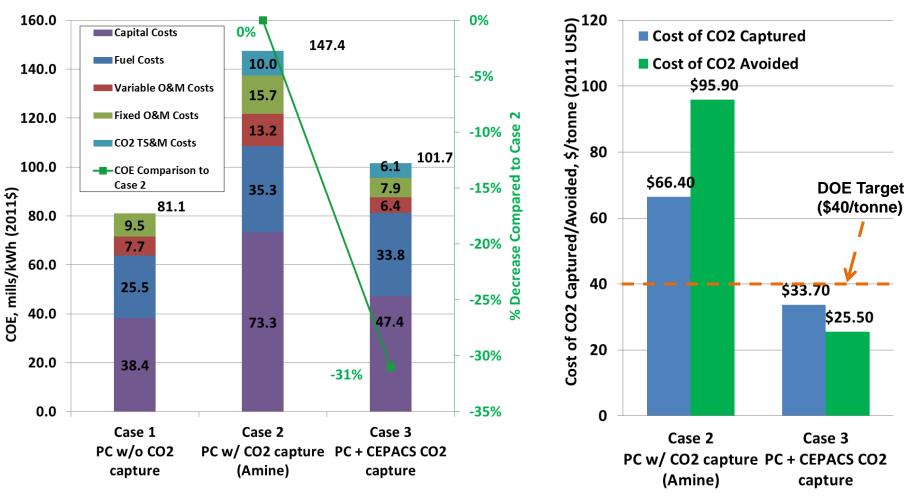
CEPACS System Performance



- CEPACS System increases power output of Baseline PC plant by 58%
- PC plant retrofitted with CEPACS system is 43% (12.3 percentage points) more efficient than the plant with amine scrubbing for carbon capture

 PC + CEPACS System CO₂ Emissions are 55% lower than PC w/ Amine due to power generation (vs. consumption)
 @ 90% capture level 18

CEPACS System Performance: Emissions and Water Usage

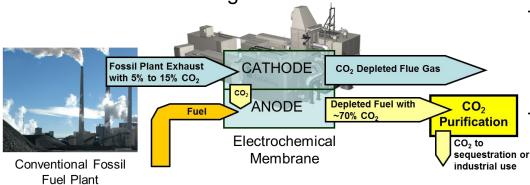


PC w/o CO2 capture

PC w/ CO2 capture (Amine) PC + CEPACS CO2 capture

- PC plant retrofitted with CEPACS system has lower emissions of NO_x, SO_x, and Particulate Matter (PM) than a PC plant retrofitted with Amine scrubber for CO₂ capture, below MATS limits
- CEPACS system produces excess process water, resulting in:
 - 58% less raw water withdrawal than with amine scrubbing
 - 20% less raw water withdrawal compared to baseline plant without CO₂ capture

- ECM-Based CEPACS System can meet DOE Target of <\$40/tonne CO₂ captured (2011 USD)
- PC plant retrofitted with CEPACS system has 31% lower COE than the plant with amine scrubbing for CO₂ Capture



JDA with **ExonMobil**

- Collaboration partner with extensive resources
 - World's largest energy company & public gas producer
 - Working interest in approximately
 25% of the world's CCS capacity
 - ~7 million metric tons CO₂ captured for sequestration annually

Opportunity

- Integration with combined cycle gas plants
- Global market opportunity measured in Gigawatts

- Project evaluating ECM carbon capture in oil sands applications
- Project members:
 - Alberta Innovates
 - Husky Energy
 - MEG Energy
 - Canadian Oil Sands Innovation Alliance (COSIA) members: BP, Canadian Natural Resources Limited, Cenovus Energy, Devon Canada Corporation, Shell, and Suncor
- Sites Studied:
 - Husky Energy-owned Steam Assisted Gravity Drainage (SAGD) heavy oil thermal facility near Lloydminster, Saskatchewan, Canada
 - Scotford bitumen upgrading facility near Edmonton, Alberta, Canada

- Utilizes commercially proven fuel cell technology
- Modular and lower costs, enhanced economics from power co-production
- Produces excess process water
- Additional benefits of NO_x destruction and water production
- Provides opportunity for phase addition and incremental CO₂ capture

Carbon Capture from Coal Plants supported by DOE/NETL (Co-operative Agreements: DE-FE0007634 & DE-FE0026580)

Guidance from NETL/DOE team: José Figueroa, Elaine Everitt, Lynn Brickett, John Litynski, Angelos Kokkinos, and others

